Organizacija
Aktivnosti
Povezave v tujini
Domače povezave
08 Nov 2018
Intervju z Ireno Križman v SJIAOS
26 Mar 2018
NOVO: Bilten št. 61
14 Nov 2017
Bilten ob 40-letnici delovanja društva
09 Oct 2017
VABILO: 40-LETNICA DELOVANJA, 17. 10. 2017
20 Sep 2017
RAZPIS OB 40-LETNICI DRUŠTVA (podaljšanje)
01 May 2017
RAZPIS OB 40-LETNICI DRUŠTVA
26 Apr 2017
Izšla je 60 številka Biltena
20 Mar 2017
DSSV 2017 - Vabilo k oddaji prispevkov
20 Dec 2016
Statistični dan 2017
13 May 2016
25. VOLILNA SKUPŠČINA, 17. 5. 2016
25 Mar 2016
Poziv za evidentiranje kandidatov
13 Mar 2016
Izšla je 59 številka Biltena
12 Oct 2015
Prijave na Statistični dan do 30. 10. 2015
27 May 2015
Vabilo k oddaji povzetkov za AS2015
27 May 2015
Zapustil nas je Franta Komel
08 Apr 2015
PREDAVANJE: Razvrščanje geografskih enot
23 Mar 2015
Izšla je nova številka Biltena
19 Mar 2015
Intervju, Franta Komel
17 Feb 2014
Oddaja prispevkov za bilten
30 Sep 2013
PREDAVANJE: Statistika (je) za vsakogar
26 Mar 2013
Redna letna skupščina Statističnega društva
12 Mar 2013
Seminar o Bayesovi statistiki
20 Feb 2013
Magistrski program Uporabna statistika
18 Nov 2012
lecturer
18 Nov 2012
PREDAVANJE: Manjkajoči podatki, 3. 12. 2012
16 Nov 2012
Statistika v oddaji Dobra ura
20 Dec 2011
PREDAVANJE: Markovski procesi v negotovosti
23 Nov 2010
PREDAVANJE: Kakovost v zdravstvu Slovenije
25 May 2010
JOS - Special Issue on Non-response
11 Jun 2009
PREDAVANJE: RR, OR in HR
20 May 2009
Predavanje: O INTERVALIH ZAUPANJA
20 Jan 2009
Predavanje: RAZVRŠČANJE RELACIJSKIH PODATKOV
16 Jun 2008
Predavanje: MULTI-STATE MODELS: AN OVERVIEW
19 May 2008
PREDAVANJE: R + LaTeX = Sweave
06 Feb 2008
Predavanje: METODE RAZVRŠČANJA ZA MIKROMREŽE
14 Jun 2019
Applied Statistics 2019
07 Feb 2019
ESRA 2019 Zagreb, 15. - 19. 7 . 2019
22 Jan 2013
Information Visualization MOOC
18 May 2011
CASS - Courses in Applied Social Surveys
Predavanje: Models for Survival in Matched Pairs |
There are no translations available. V okviru biostatističnega centra bo v ponedeljek, 30.5.2011, ob 16.uri na IBMI predavala dr. Mette Gerster z Univerze Southern Denmark. Models for Survival in Matched Pairs Co-twin control designs are useful in identification of causal effects and have been applied to a vast number of different research questions within the fields of epidemiology and psychology. The logic of the co-twin control design assumes that twins who have been brought up together are matched on early environmental factors. Moreover, twins have partly or fully identical genetic setups at birth, depending on their zygosity. This implies that a number of factors - that are usually diffcult to measure - are held constant in within-pair comparisons. Hence confounding from these factors is controlled for per design thus providing less biased estimates of effect. Aside from confounder control, the differences in genetic relatedness between monozygotic (MZ) (genetically identical) and dizygotic (DZ) twins (share on average half of segregating genes) can be used for the purpose of making inferences about the source of confounding, i.e. genetic or environmental confounding, respectively. Assuming an association in the unpaired analysis, genetic confounding would be indicated if the within-pair analysis showed a partial attenuation of the association in DZ twins and a full attenuation in the MZ twins. Similarly, a full attenuation in both DZ and MZ twins would be compatible with shared environmental confounding. Finally to support a causal effect of exposure the association would have to persist in both DZ and MZ twins. An application of the co-twin control design will be presented using a Danish twin study of the effect of education on breast cancer incidence (Madsen et al, 2011). Furthermore, I will discuss which survival models are appropriate to use in this context. One possibility is to use a shared frailty model. However, inference in the frailty model requires independence between the frailty variable and the explanatory variables (education in the above example). We study how violations of this assumption affects inference for the regression coeffcients, and conclude that substantial bias may occur. Instead, we propose making inference by means of a stratified Cox model (Holt and Prentice, 1974) and we demonstrate that this model gives unbiased estimates regardless of a possible dependence between the frailty variable and the explanatory variable. References: Madsen, M, Andersen PK, Gerster, M, Andersen, A-MN (2011). Education and incidence of breast cancer: Does the association replicate within twin pairs?, Br. J. Cancer, 104, 520-523. Holt, JD, Prentice, RL (1974). Survival analysis in twin studies and matched pairs experiments. Biometrika, 61, 17-30. |