Organizacija
Aktivnosti
Povezave v tujini
Domače povezave
08 Nov 2018
Intervju z Ireno Križman v SJIAOS
26 Mar 2018
NOVO: Bilten št. 61
14 Nov 2017
Bilten ob 40-letnici delovanja društva
09 Oct 2017
VABILO: 40-LETNICA DELOVANJA, 17. 10. 2017
20 Sep 2017
RAZPIS OB 40-LETNICI DRUŠTVA (podaljšanje)
01 May 2017
RAZPIS OB 40-LETNICI DRUŠTVA
26 Apr 2017
Izšla je 60 številka Biltena
20 Mar 2017
DSSV 2017 - Vabilo k oddaji prispevkov
20 Dec 2016
Statistični dan 2017
13 May 2016
25. VOLILNA SKUPŠČINA, 17. 5. 2016
25 Mar 2016
Poziv za evidentiranje kandidatov
13 Mar 2016
Izšla je 59 številka Biltena
12 Oct 2015
Prijave na Statistični dan do 30. 10. 2015
27 May 2015
Vabilo k oddaji povzetkov za AS2015
27 May 2015
Zapustil nas je Franta Komel
08 Apr 2015
PREDAVANJE: Razvrščanje geografskih enot
23 Mar 2015
Izšla je nova številka Biltena
19 Mar 2015
Intervju, Franta Komel
17 Feb 2014
Oddaja prispevkov za bilten
30 Sep 2013
PREDAVANJE: Statistika (je) za vsakogar
26 Mar 2013
Redna letna skupščina Statističnega društva
12 Mar 2013
Seminar o Bayesovi statistiki
20 Feb 2013
Magistrski program Uporabna statistika
18 Nov 2012
lecturer
18 Nov 2012
PREDAVANJE: Manjkajoči podatki, 3. 12. 2012
16 Nov 2012
Statistika v oddaji Dobra ura
20 Dec 2011
PREDAVANJE: Markovski procesi v negotovosti
23 Nov 2010
PREDAVANJE: Kakovost v zdravstvu Slovenije
25 May 2010
JOS - Special Issue on Non-response
11 Jun 2009
PREDAVANJE: RR, OR in HR
20 May 2009
Predavanje: O INTERVALIH ZAUPANJA
20 Jan 2009
Predavanje: RAZVRŠČANJE RELACIJSKIH PODATKOV
16 Jun 2008
Predavanje: MULTI-STATE MODELS: AN OVERVIEW
19 May 2008
PREDAVANJE: R + LaTeX = Sweave
06 Feb 2008
Predavanje: METODE RAZVRŠČANJA ZA MIKROMREŽE
14 Jun 2019
Applied Statistics 2019
07 Feb 2019
ESRA 2019 Zagreb, 15. - 19. 7 . 2019
22 Jan 2013
Information Visualization MOOC
18 May 2011
CASS - Courses in Applied Social Surveys
PREDAVANJE: Statistical issues emerging in training and evaluating classification models in presence of rare events |
There are no translations available. V okviru biostatističnega centra bo v ponedeljek, 7. junija 2010, ob 13. uri predavanje na IBMI. Predavala bo Giovanna Menardi z univerze v Padovi. Statistical issues emerging in training and evaluating classification models in presence of rare events The problem of modeling binary responses by using cross sectional data has found a number of satisfying solutions extending throughout both parametric and nonparametric methods. Examples are traditional classification models like logistic regression, discriminant analysis, classification trees or procedures at the forefront as neural networks or combinations of classifiers (bagging, boosting, random forests). These models are based on the implicit assumption that the distribution of the responses is well balanced over the sample. However, there exist many real situations where it is a priori known that one of the two responses (usually the most interesting for the analysis) is rare. This class imbalance occurs in several domains as for example finance (detection of defaulter credit applicants), epidemiology (diagnosis of rare diseases), social sciences (analysis of anomalous behaviors), computer sciences (identification of some features of interest in image data). The class imbalance heavily afiects both the model estimation and the evaluation of its accuracy. Classification methods are in fact conceived to estimate the model that best fits the data according to some criterion of global accuracy. When data are unbalanced the model tends to focus on the prevalent class and ignore the rare events (Japkowicz, and Stephen, 2002). Moreover, when evaluating the quality of the classification, the same measures of global accuracy may lead to misleading results or even if alternative error measures are used, the scarcity of data conducts to high variance estimates of the error rate, especially for the rare class. In this work an unified and systematic framework for dealing with both the problems is proposed, based on a smoothed bootstrap form of re-sampling from data. The proposed technique includes some of the existing solutions as a special case, it is supported by a theoretical framework and reduces the risk of model overfitting. The presented talk is based on joint work with prof. Nicola Torelli from University of Trieste. |